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I.   INTRODUCTION  

In 1695, the concept of fractional derivative first appeared in a famous letter between L’Hospital and Leibniz. Many great 

mathematicians have further developed this field. We can mention Euler, Lagrange, Laplace, Fourier, Abel, Liouville, 

Riemann, Hardy, Littlewood, and Weyl. In the past decades, fractional calculus has been considered as one of the best 

tools to describe the process of long memory. Such models are interesting for physicists, engineers, and mathematicians. 

Fractional calculus has important applications in various fields such as physics, mechanics, electricity, biology, 

economics, control theory, and so on. The introduction and application of fractional calculus can refer to [1-9]. Fractional 

calculus includes the derivative and integral of any real or complex order. There is no unique definition of fractional 

derivative and integral. Common definitions include Riemann Liouville (R-L) fractional derivative, Caputo fractional 

derivative, Grunwald Letinikov (G-L) fractional derivative, and Jumarie’s modified R-L fractional derivative [1-4].  

In this article, based on Jumarie type of modified R-L fractional derivative, we evaluate the fractional Laplace transforms 

of some fractional analytic functions such as fractional exponential function, fractional sine and cosine functions, and 

fractional hyperbolic sine and cosine functions. A new multiplication of fractional analytic functions plays an important 

role in this paper, and the results we obtained are natural generalizations of the results in classical Laplace transform. For 

the introduction and application of fractional Laplace transform can refer to [10-11] 

II.   DEFINITIONS AND PROPERTIES  

Firstly, we introduce the fractional calculus used in this article. 

Definition 2.1: If   is a real number, and   is a positive integer. The Jumarie’s modified Riemann-Liouville fractional 

derivative [12] is defined by  
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where  ( )  is the gamma function. On the other hand, we define the  -fractional integral of  ( ) by (     
 ), ( )-  

(     
  ), ( )-, where    . If (     

 ), ( )- exists, then  ( ) is called an  -fractional integrable function.  We have the 

following properties. 

Proposition 2.2:  If       are real numbers and        then 
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Next, we define the fractional analytic function. 

Definition 2.3 ([13]): Assume that     , and    are real numbers for all  ,    (   ), and let      . If the function 

   ,   -    can be expressed as an  -fractional power series, i.e.,   ( 
 )  ∑

  

 (    )
(    )

   
    on some open 

interval (         ), then we say that   ( 
 ) is  -fractional analytic at   , where   is the radius of convergence about 

  . In addition, if    ,   -    is continuous on closed interval ,   - and is  -fractional analytic at every point in open 

interval (   ), then    is called an  -fractional analytic function on ,   -. 

In the following, some fractional analytic functions are introduced. 

Definition 2.4 ([14, 16]):  The Mittag-Leffler function is defined by 

  ( )  ∑
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   ,                                                                              (4) 

where     is a real number,     , and   is a complex number. 

Definition 2.5 ([15]): Assume that      , and     are real numbers.   (  
 )  ∑
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     is called  -fractional 

exponential function, and the  -fractional cosine and sine function are defined as follows: 
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Moreover, the  -fractional hyperbolic cosine function and hyperbolic sine function are defined by 
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Remark 2.6:  If     ,     , then     ( )      , and     ( )      . 

Notation 2.7:  Suppose that        is a complex number, where    √   , and     are real numbers. Then  , the 

real part of   , is denoted by   ( ) ; b, the imaginary part of   , is denoted by   ( ).  

Proposition 2.8 (fractional Euler’s formula): Assume that      , then 
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Next, we introduce a new multiplication of fractional analytic functions. 

Definition 2.9 ([13]): Assume that      ,   ( 
 ) and   ( 

 ) are two  -fractional analytic functions, 
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Theorem 2.10 (integration by parts for fractional calculus)([17]): If      ,     are real numbers, and 

  ( 
 )   ( 

 ) are  -fractional analytic functions, then 
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 )-1.                    (13) 

The following is the definition of fractional Laplace transform. 

Definition 2.11: Assume that      ,   is a real variable, and    ( 
 ) is an  -fractional analytic functions defined for 

all    . The function   ( ) defined by the  -fractional improper integral  (     
 ),   (   

 )   ( 
 )-  is called the  -

fractional Laplace transform of the function     , and is denoted by   *   ( 
 )+. That is,  
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Proposition 2.12 ([15]): If       , and     are real number, then 
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 ).                                                                  (15) 

III.   MAIN RESULTS 

In the following, we introduce the major results in this paper. 

Proposition 3.1 (linearity of fractional Laplace transform): The fractional Laplace transform is a linear operation; that is, 

for any fractional analytic functions    ( 
 )  and    ( 

 )  whose fractional Laplace transforms exist, then for any 

constants   and  , the fractional Laplace transform     ( 
 )      ( 

 ) exists and 
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 )+.                                 (16) 

Theorem 3.2 (first shifting theorem for fractional Laplace transform): Suppose that       ,     are real numbers, 

and    ( 
 ) has the fractional Laplace transform   ( ) for    . Then   (   

 )    ( 
 ) has the fractional Laplace 

transform   (   ) for        In formula, 
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Q.e.d. 

Proposition 3.3: Let       ,          be  real numbers,     , and   be a positive integer. Then 
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By first shifting theorem for fractional Laplace transform, we have 
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Q.e.d. 

IV.   CONCLUSION  

The purpose of this article is to find the fractional Laplace transforms of several fractional analytic functions. In fact, 

these results we obtained are generalizations of Laplace transform of analytic functions. The method used in this paper is 

also similar to that used in classical Laplace transform. Moreover, the new multiplication we defined is a natural operation 

in fractional calculus, and it plays a vital role in this paper. In the future, we will also use Jumarie’s modified R-L 

fractional derivative to solve the problems in fractional calculus and applied science. 
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